A Novel Multiobjective Particle Swarm Optimization Combining Hypercube and Distance

نویسندگان

چکیده

The multiobjective optimization problems are a common problem in various fields the real society. Therefore, solving one of important studied by many researchers recent years. From research years, it can be seen that there is still lot room for development particle swarm problems. This paper proposes novel combining hypercube and distance, called HDMOPSO. velocity update part this uses combination distance. In order to prevent algorithm from falling into local optimum, also nonlinear decreasing opposite mutation strategy, which enables particles explore more area. Finally, control strategy used external archive improve convergence diversity algorithm. has been simulated 22 test compared with algorithms (MOPSOs) evolutionary (MOEAs). results show HDMOPSO effectively diversity, so an effective improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search Optimization using Multiobjective Particle Swarm Optimization

The reusability provides many benefits such as increasing productivity, Reliability & Quality along with reducing the cost &development time and if the number of components developed is not according to the requirement then the technique of reusability is of great help. The main problem faced by the CBSE in reusability is to select the component for reuse as before reusing there is need to retr...

متن کامل

Multiobjective Particle Swarm Optimization Using Fuzzy Logic

The paper presents FMOPSO a multiobjective optimization method that uses a Particle Swarm Optimization algorithm enhanced with a Fuzzy Logic-based controller. Our implementation makes use of a number of fuzzy rules as well as dynamic membership functions to evaluate search spaces at each iteration. The method works based on Pareto dominance and was tested using standard benchmark data sets. Our...

متن کامل

Multiobjective Optimization Using Parallel Vector Evaluated Particle Swarm Optimization

This paper studies a parallel version of the Vector Evaluated Particle Swarm Optimization (VEPSO) method for multiobjective problems. Experiments on well known and widely used test problems are performed, aiming at investigating both the efficiency of VEPSO as well as the advantages of the parallel implementation. The obtained results are compared with the corresponding results of the Vector Ev...

متن کامل

A Multiobjective Particle Swarm Optimizer for Constrained Optimization

Constraint handling techniques are mainly designed for evolutionary algorithms to solve constrained multiobjective optimization problems (CMOPs). Most multiojective particle swarm optimization (MOPSO) designs adopt these existing constraint handling techniques to deal with CMOPs. In the proposed constrained MOPSO, information related to particles’ infeasibility and feasibility status is utilize...

متن کامل

A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization

This paper introduces a modified PSO, Non-dominated Sorting Particle Swarm Optimizer (NSPSO), for better multiobjective optimization. NSPSO extends the basic form of PSO by making a better use of particles’ personal bests and offspring for more effective nondomination comparisons. Instead of a single comparison between a particle’s personal best and its offspring, NSPSO compares all particles’ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Programming

سال: 2022

ISSN: ['1058-9244', '1875-919X']

DOI: https://doi.org/10.1155/2022/9448419